

 1

Shear-Image Order Ray Casting Volume Rendering

 Yin Wu†, Vishal Bhatia‡, Hugh Lauer† Larry Seiler‡
 TeraRecon, Inc. Mitsubishi Electric Research Laboratories

Abstract

This paper describes shear-image order ray casting, a new
method for volume rendering. This method renders sampled data
in three dimensions with image quality equivalent to the best of
ray-per-pixel volume rendering algorithms (full image order),
while at the same time retaining computational complexity and
spatial coherence near to that of the fastest known algorithm
(shear-warp). In shear-image order, as in shear-warp, the volume
data set is resampled along slices parallel to a face of the volume.
Unlike shear-warp, but like the texture-based methods, rays are
cast through the centers of pixels of the image plane and sample
points are at the intersections of rays with each slice. As a result,
no post-warp step is required. Unlike texture methods, which
realize shear and warp by transformations in a commodity graph-
ics system, the shear-image ray casting methods use a new fac-
torization that preserves memory and interpolation efficiency. In
addition, a method is provided for accurately and efficiently em-
bedding conventional polygon graphics and other objects into
volumes. Both opaque and translucent polygons are supported.

We also describe a method, included in shear-image order
but applicable to other algorithms, for rendering anisotropic and
sheared volume data sets directly with correct lighting.

The shear-image order method has been implemented in the
VolumePro™ 1000, a single chip real-time volume rendering
engine capable of processing volume data at a pipeline rate of 109
samples per second. Figure 1 on the color page shows a shear-
image order gallery of volumes rendered with different translu-
cency, lighting, and some embedded geometry.
CR Categories and Subject Descriptors: I.3.1 [Computer
Graphics]: Hardware Architecture; I.3.3 [Computer Graphics]:
Picture/Image Generation; I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism; I.4.10 [Image Processing and
Computer Vision]: Image Representation.
Additional Keywords: Volume rendering; ray casting; shear
warp; base plane; shear-image order; image order.

1 INTRODUCTION

Real-time volume rendering is a technique for creating inter-
active images of objects and phenomena represented as sampled
data in three or more dimensions [7]. It is becoming increasingly
important in medical imaging, seismic exploration, and scientific
visualization, and it has potential applications in industrial inspec-
tion, non-destructive testing, airline security, and any area where

it is important to see the internal or hidden structures of the ob-
jects under study. While volume rendering algorithms have been
known for years, there are three principal challenges to achieving
useful, interactive visualization: amassing enough computational
power to render images at multiple frames per second; moving
huge amounts of data from memory to the processing power; and
providing high quality, visually meaningful images.

In this paper, we introduce shear-image order volume render-
ing. Shear-image order inherits the ray-per-pixel feature of full
image order; it is shear order as the x and y-axes of the sample
space are sheared from the z-axis of image space (hence the name
shear-image order). The shear-image order method eliminates
shear-warp’s intermediate image and final warp step while pre-
serving the memory access efficiency of shear-warp. It produces
high quality images by casting rays directly through the centers of
pixels of the image plane. Shear-image order is efficient to com-
pute, requiring four interpolations per sample compared with three
interpolations per sample for shear-warp and seven interpolations
per sample for full image order. Shear-image order supports the
accurate embedding of polygon and other objects, and it enables
direct rendering of anisotropic and sheared data sets without the
need for resampling. The shear-image order method is imple-
mented in VolumePro™ 1000, a second-generation real-time vol-
ume rendering engine.

Section 2 of this paper briefly describes existing volume ren-
dering algorithms — shear-warp, full image order, and texture
based volume rendering. Section 3 describes the shear-image
order method, including its coordinate systems and transforma-
tions, the algorithm for stepping through the sample points in
parallel with volume data for high performance and discussions
relating it to different volume rendering methods. Section 4 de-
scribes how polygons and other objects can be accurately embed-
ded in the rendered image of the volume. Section 5 discusses ani-
sotropic and sheared volumes, which are common in the medical
imaging field. Section 6 presents an overview of the VolumePro
1000 hardware implementation. Section 7 presents conclusions
and discusses future work.

2 BACKGROUND

This section provides a brief review of three important algo-
rithms for volume rendering — shear-warp, full image order, and
texture based volume rendering.

2.1 Shear-Warp Order

One of the fastest classic algorithms for volume rendering is
shear-warp [6]. In shear-warp, the 3D viewing matrix is factored
into “a 3D shear parallel to slices of the volume data, a projection
to form a distorted intermediate image, and a 2D warp to produce
the final image” [6]. Shear-warp has the advantage of retrieving
volume data from memory in a coherent manner, thereby maxi-

† Address of Yin Wu and Hugh C. Lauer: TeraRecon, Inc. 300 Baker Avenue, Suite

301, Concord, MA 01742. E-mail: wu@terarecon.com, lauer@terarecon.com,
World-wide web: http://www.terarecon.com/products/volumepro_prod.html

‡ Current address of Vishal Bhatia and Larry Seiler: ATI Research, Inc., 62 Forest
Street, Marlboro, MA 01752. E-mail: vbhatia@ati.com, lseiler@ati.com.

 2

mizing the utilization of memory bandwidth. It has the disadvan-
tages of requiring a final warp step and has an additional difficulty
of accurately embedding polygons and images of other objects.
VolumePro™ 500, the first commercial real-time volume-
rendering engine, is a hardware implementation of shear-warp
with flexibility in the sampling frequency in the z-dimension [9].

Figure 2 illustrates the shear-warp factorization. Voxel posi-
tions are shown as dots. The × characters represent sample points
of the volume. The pixel locations are the intersections of the gray
grid of Figure 2d. In Figure 2a, the axes of the volume data set are
permuted so that the z-axis is most nearly parallel to and in the
same direction as the rays. The volume is re-sampled along the
rays with sample points organized in slices perpendicular to this
permuted z-axis, contributing to the memory coherency. Both
shear-image order and 2D texture methods share this feature.

Within each slice, samples are organized in grids parallel to
the grid of voxels. The volume is transformed by shearing each
slice with respect to its neighbors (Figure 2b). Samples are then
projected onto a plane parallel to those slices called the base plane
(Figure 2c). The resulting image is then warped to produce the
final image as shows in Figure 2d.

The shear-warp factorization allows the rendering engine to
fetch and process volume data in a sequence related to its storage
in memory, thereby using both memory bandwidth and recently
retrieved voxel data efficiently. In addition, interpolation opera-
tions can be shared among adjacent samples in the same slice:
four neighbors in each slice share one interpolated value in the
permuted z direction, and two neighbors share an interpolated
value in a second dimension within the slice. Therefore, shear-
warp method realizes tri-linear interpolation with three multiplica-
tions per sample, one multiplication per dimension.

 (a) Side View of Casting Ray (b) Volume

Z slices &
inter-slices

li

Ray

Screen plane

Base
plane Warp

Project

Screen plane

 (c) Base plane (d) Screen view

Xs

Ys

Figure 2: Shear-warp

It is possible to achieve high quality images using shear-
warp. However, doing so requires over-sampling the volume data
set to compensate for distortion in the warp step and high preci-
sion calculation to reduce error propagation between the sampling
stages. These requirements impact performance. Furthermore, the
mismatch between pixels in the base plane and the image plain
makes it difficult to embed polygons into rendered volumes.

2.2 Full Image Order

Another class of ray-casting methods is often called image
order, but is referred in this paper as full image order in order to
emphasis the difference from shear-image order. In full image

order methods, rays are cast through the centers of pixels of the
image plane (Figure 3b) and samples are organized into planes
parallel to the image plane (Figure 3a). These methods eliminate
the need for the final warp step of shear-warp methods, and they
can produce high quality images without over-sampling the vol-
ume. However, the cost is increased complexity in data handling
and buffering and the loss of coherent patterns of memory ac-
cesses. Moreover, interpolations cannot, in general, be shared
between adjacent samples so seven multiplications are needed to
derive sample values by tri-linear interpolation (four in the 1st
interpolation dimension, two in the 2nd dimension and one in the
3rd dimension). As a result, full image order methods are not yet
competitive in performance with shear-warp methods, even using
hardware acceleration.

 (a) Side View of Casting Ray (b) Screen View

Screen plane

View
 slices

Ray

Figure 3: Full Image Order

2.3 Texture Map Methods

Texture map methods have been widely discussed in the lit-
erature (see [1], [11]). These can be partitioned into 3D texture
methods and 2D texture methods. 3D texture methods are concep-
tually simple and much like full image order. The volume data set
is stored in the 3D texture memory of a conventional polygon
graphics system. To render the volume from a particular point of
view, a set of polygons collectively called the proxy geometry is
defined to represent slices parallel to the image plane. These poly-
gons are rasterized and texture mapped by the 3D texture to pro-
duce sample values. These samples are then accumulated in a
frame buffer using ordinary alpha blending.

This is equivalent to ray casting where all of the rays are ad-
vanced in parallel, one slice of proxy geometry at a time. The
fragments of each slice are derived from the texture map by tri-
linear interpolation, using the interpolation machinery that is in-
herently part of 3D texture map systems. Each sample point is
naturally aligned with a pixel on the image plane, so no further
processing is required. It is also easy to embed polygonal objects
by simply drawing them along with the proxy geometry.

This method can produce high quality images if the spacing
of the slices of proxy geometry is sufficiently close or if pre-
integration is used [3]. However, there is little memory coherency
in the interpolation process, so performance can be challenging. In
addition, there is no natural way for the algorithm to determine
whether any particular ray can to be terminated early, for example
because it has already reached maximum opacity.

There are two major impediments that prevent 3D texture
mapping on commodity graphics chips from being the preferred
method of volume rendering. First, modern graphics chips require
very specialized, high bandwidth memory devices. Currently,
these come in very small sizes — 128 megabits — and cannot be
cascaded because of timing demands. Therefore, these graphics
chips cannot support the large data sets usually found in medical
and geophysical applications, e.g., one gigabyte or more. The
second impediment is the estimation of gradients for illumination.

 3

2D texture methods for volume rendering are more complex
than 3D texture methods, but they are useful on graphics hardware
that has only 2D texture support. Typically, a volume data set is
partitioned into slices three times, once for each axis. Then each
slice from each dimension is loaded into a separate 2D texture
map. To render a volume, proxy geometry is generated once for
each slice, rasterized, textured by the map corresponding to that
slice and orientation, then accumulated by blending in a frame
buffer. The 2D texture methods suffer the same limitations as 3D
texture methods. In addition, each volume data set needs to be
stored three times, increasing the total memory requirement.

3 SHEAR-IMAGE RAY CASTING

Shear-image ray casting preserves shear-warp’s organization
of sample points in slices parallel to the slices of the volume, but
it casts rays directly through the centers of pixels of the image
plane, as in full image order. It thereby eliminates the intermedi-
ate image and final warp step of shear-warp. It is similar to 2D
texture methods in that the rays are cast from the screen plane
onto slices parallel to a face of the volume. However, the shear-
image method explicitly decomposes the 3D viewing transforma-
tion into two matrices: a transformation from voxel coordinates to
an intermediate coordinate system called sample space that is
aligned with the pixels of the image or screen; and a transforma-
tion to adjust depth values of sample points to reflect their dis-
tances from the image plane or other reference point. The explicit
decomposition has four beneficial features: (1) sample space is
spatially coherent with both image or screen coordinates and with
the voxel coordinates; (2) intermediate samples are cast directly
from screen plane and can therefore blended without additional
error propagation and image distortion; (3) the depth warp allows
the embedding of polygons by comparing depths of samples with
those of fragments of the polygons; (4) and super sampling factors
can be controlled in a very flexible way, allowing in equal sample
spacing in three dimensions for any view angle.

 (a) Side View of Casting Ray (b) Sample Space

Ray

Screen plane

Xs

Ys

Figure 4: Shear-Image
In Figure 4, sample points (×) are organized into slices parallel to
a face of the volume (i.e., normal to the permuted z axis), as
shown in Figure 4a, similar to Figure 2a. Samples within each
slice are located at points where the rays passing through pixels
on the image plane intersect the slice. Figure 4b shows the sample
grid xs and ys are not parallel to the permuted voxel grid xv and yv.
Indeed, the shear-image method has the same screen view image
as full image order (Figure 3b): the sample grid is aligned with the
screen pixels. However, due to the shear between screen and sam-
ple space in the permuted z dimension, a separate calculation is
needed to obtain the depth of each sample.

The memory coherence of shear-image method also applies
to gradient interpolation. Gradients are estimated at voxel points
by central difference or another convolution. Gradients at sample
points are derived by tri-linear interpolation, in parallel with de-

riving sample values. Our method considers the gradient calcula-
tion for anisotropic data, which is described further in Section 5.

The shear-image algorithm operates in two parts. The first
part operates like shear-warp by stepping through volume mem-
ory one slice at a time. It interpolates between adjacent voxel
slices to obtain slices of what we call z-interpolated samples —
that is, sample values resulting from interpolation only in the z-
dimension of the volume. Since there has not yet been any inter-
polation in the other two dimensions, these z-interpolated samples
are organized in a grid parallel to the x- and y-dimensions of the
volume.

The second part of the algorithm steps through each slice of
z-interpolated samples in the x- and y-dimensions of the sample
space. It enumerates the sample points (i.e., the intersections of
rays with the slice), and it derives color and opacity values for
each one from the z-interpolated samples of that slice. These sam-
ples are accumulated along their respective rays, thereby produc-
ing rendering of the volume directly on the image plane.

The algorithm also associates with each sample point a depth
value to measure the distance from the sample point to the eye or
some other reference. These depth values correspond to the z-
values of traditional polygon graphics and are used for embedding
polygons in the rendered image as described in Section 4.

3.1 Coordinate Systems and terms

To precisely define shear-image order, we illustrate various
coordinate systems and transformations as well as the terms used
in this paper. These are illustrated in Figure 5.

World space, Camera or Eye space, Normalized Device co-
ordinates, and Image space are coordinate systems commonly
understood in computer graphics [4]. Likewise, an application
specifies the position, orientation, scale, and view of the volume
object to be rendered using the Model, View, Projection, and
Viewport transformations of the underlying graphics environment.

For shear-image order rendering, we introduce voxel space
as the coordinate system of the 3D array of voxel data; voxels are
at integer positions in this space, regardless of the coordinate sys-
tem in which the data was obtained. Object space is a 3D Carte-

 Voxel Space

Object Space

World Space

Camera Space

NDC Space

Image Space

Sample Space

Correction (C)

Model (M)

View (V)

Projection (P)

Viewport (VP)

Resample (R)

Depth warp (DW)

Permuted Voxel Space

Permutation (PM)

Figure 5: The coordinate systems of shear-image order rendering

 4

sian coordinate system of the volume based on a local origin. The
Correction transformation maps voxel space to object space, cor-
recting for anisotropy and shear in the sampling process. Per-
muted voxel space is a permutation of voxel space in which the
axes are rearranged so that the z-axis is most nearly parallel to the
rays and in the same direction. It is introduced primarily to avoid
singularities in solving for the unknowns in the following sec-
tions. Sample space is the coordinate system of sample points;
each sample is located at an integer position in sample space.

In this paper, the axes of permuted voxel space are labeled
xv, yv, and zv. The axes of image space are denoted in this paper by
xi, yi, and D (for depth). The axes of sample space are labeled xs,
ys, and zs. A crucial identity is that xs = xi, and ys = yi. The origin
of sample space corresponds to (xi = 0, yi = 0, D = depth0), where
depth0 is the depth value of the near plane of the viewport.

Figure 5 shows two hierarchies of transformations mapping
voxel space to image space. The Correction transformation and
the traditional transformations of computer graphics are on the
left. The three transformations of shear-image order rendering are
on the right, namely, the Permutation transformation for rearrang-
ing the axes, the Resampling transformation for mapping per-
muted voxel coordinates to sample space, and the Depth trans-
formation for mapping the zs-coordinate of sample space to the D-
axis of image space.

3.2 Derivation of rendering parameters

When an application requests the rendering of a volume by
the shear-image order method, it must specify the Correction
transformation, the graphics transformations on the left side of
Figure 5, depth0, and the spacing of sample points along rays.1
From Figure 5, it can be seen that
 VP × P × V × M × C = DW × R × PM. (1)
That is, a mapping of a point or vector in voxel space by the con-
ventional graphics transformations, augmented by the Correction
transformation, must produce the same result as the transforma-
tions implemented by the shear-image order engine.

Let Mp = VP × P × V × M × C × (PM)-1. Observe that Mp is a
linear mapping of one three-dimensional space into another and
therefore can be expressed in homogeneous coordinates as a ma-
trix comprising four column vectors. The first three vectors define
how unit vectors in the three dimensions of the source space (i.e.,
permuted voxel space) map into the target space (i.e., image
space). The fourth vector maps the origin of the source space to a
point in the target space. Therefore, Mp can be represented as





















=

1000
,

0
,

0
,

0

vivvv

vivivivi

vivivivi

p DdDzdDydDx
Yzdyydyxdy
Xzdxydxxdx

M , (2)

where dxixv, dxiyv, dxizv, etc., represent incremental changes in the
x-dimension of image space causes by unit steps in the x-, y-, and
z-dimensions of voxel space, respectively, and where X0

i,v, Y0
i,v,

and D0
i,v, are image space coordinates of the origin of voxel space.

From Equation 1, Mp = DW × R. From the definition of sam-
ple space, the xs- and ys-values are exactly the same as the xi- and
yi-values of image space. By definition, the depth transformation
DW only transforms the zs-axis and leaves the xs- and ys-axes un-
changed. Therefore, DW can be written as

1 The spacing of samples along rays may be adjusted to trade off rendering speed

vs. image quality. A reasonable default is that the distance between adjacent sam-
ples on a ray be approximately equal to the distance between adjacent rays.

 



















=

1000
0

0010
0001

depthdDzdDydDx
DW

sss

. (3)
In Equation 3, dDzs and depth0 are known from the spacing of
sample points along rays and the definition of the origin of sample
space, respectively. This leaves only dDxs and dDys as unknowns.

Similarly, R transforms permuted voxel space into sample
space and can therefore be written as the matrix





















=

1000
00 ,

0
,

0
,

0

vsvs

vsvsvsvs

vsvsvsvs

Zzdz
Yzdyydyxdy
Xzdxydxxdx

R . (4)

From Equations 2 and 3 and the definition of sample space, it can
be seen that the first two rows of R are identical to the first two
rows of Mp, with xs and ys being substituted for xi and yi, respec-
tively. The third row of R has zeros in the first two columns be-
cause sample slices are parallel to voxel slices — i.e., a unit step
in either the xv- or yv-dimension of permuted voxel space produces
no change in the zs-dimension of sample space. This leaves two
unknowns in R, namely dzszv and Z0

s,v.
Taking advantage of the fact that the lower left quadrant of R

is zero, Equations 3 and 4 can be solved for dDxs and dDys by

 















=








−

v

v

vsvs

vsvs

s

s
dDy
dDx

ydyydx
xdyxdx

dDy
dDx 1

. (5)

Finally, R can be solved for its two remaining unknowns, namely

 () ()
s

vssvssv
vs dDz

zdydDyzdxdDxdDzzdz ×−×−
= , and

 () ()
s

vssvssvi
vs

dDz
depthYdDyXdDxZZ 0,

0
,

0
,

0
,

0 −×−×−
= . (6)

This derivation leads to a simple and efficient implementation, as
described in the next section.

3.3 Shear-image order algorithm

The heart of shear-image order is a digital difference algo-
rithm that steps through sample space one slice at a time, and
within slices one row at a time, and within rows one sample at a
time — i.e., it increments in the zs-dimension most slowly, the ys-
dimension next, and the xs-dimension most quickly. This is in
contrast to many other ray casting algorithms, which follow one
ray to its end before considering another ray. The increments for
stepping turn out to be the entries of the inverse of R, i.e., R-1.





















=−

1000
00

1

vsv

vsvsvsv

vsvsvsv

originZzdz
originYzdyydyxdy
originXzdxydxxdx

R . (7)

Figure 6 shows the shear-image order algorithm in the form
of two co-routines. In this figure, k is the number of slices that
must be buffered ahead in order to estimate gradients and interpo-
late voxel values and gradients in the zv-dimension. The two co-
routines are:

 5

• A voxelStepper routine that steps through the volume data set
in slice major order in permuted voxel space. It reads ahead
by k voxel slices, estimates gradients at each voxel point, and
forms slices of z-interpolated samples and gradients that it
sends to the other co-routine, the sampleStepper. By this
means, the voxelStepper can process volume data in a mem-
ory-coherent way at very high speeds.

• A sampleStepper routine that processes each slice in the
order of the x- and y-axes of sample space, which is aligned
with pixels of the image plane. It keeps track of the permuted
voxel coordinates of each sample, performs visibility tests on
the sample point, and derives the sample value by 2D inter-
polation of the z-interpolated samples and gradients in the
slice buffer passed by the voxelStepper.

The sample stepper can also test for early termination of a group
of rays. If all of the rays of the group reach a threshold of opacity,
it stops processing that group and notifies the voxel stepper to
skip over the remaining voxels associated with that group.

3.4 Discussion

In volume rendering, images of interior structures are gener-
ated by assigning different opacities to different types of tissue or

materials. The interfaces between different opacity levels create
the appearance of 3D shapes. In our experience, the two most
important factors in achieving high quality, visually meaningful
images are the ability to cast rays through the centers of the pixels
of the image plane and a good illumination function. Ray-per-
pixel rendering avoids the artifacts and degradation that result
from repeated resampling, especially with gradient calculation. In
this section, we compare the shear-warp, full image order, texture
methods and shear-image order volume rendering with respect to
image quality, illumination, and memory efficiency. Table 1 on
the next page shows a summary of these comparisons.

Full image order cay casting provides a natural sampling for
ray-per-pixel image quality. Besides high image quality in gen-
eral, it is easy to generate Multi-Planar Reconstructions (MPR’s),
the cross sections of the human body that are widely used in
medical diagnosis. Because the fragments of the proxy geometry
are naturally aligned with pixels on the image plane, it is also easy
to embed polygon objects in a view of a volume. The cost of full
image order rendering is loss of memory coherency and the seven
interpolation operations needed for each component of each sam-
ple. 3D texture volume rendering is the only cost effective imple-
mentation of full image order to date on modern 3D graphics
chips, and these have other limitations (see Section 2.3).

By comparison, shear-image order keeps the ray-per-pixel
feature of full image order rendering, thus preserving high image
quality with or without lighting. The new factorization improves
memory coherence and reduces interpolation cost to four multipli-
cations per component per sample. However, it is more difficult in
shear-image order to create accurate MPR’s at arbitrary angles to
the volume. This is because sample slices are not, in general, par-
allel to the MPR angle, so a cut plane through the volume must be
used, along with a falloff filter at the edges. Shear-image order
also requires a view-dependent alpha correction, if we choose to
keep a constant sampling distance in permuted z direction.

The fundamental difference between shear-warp and shear-
image order is that shear-image order allows rotation and shear of
the sampling plane onto which rays are projected. This avoids the
post warp inherent in shear-warp, thereby enhancing the image
quality, especially for images with illumination and fine details.
Figure 7 on the color page shows a comparison of image quality
between shear-warp (rendered by VolumePro 500) and the shear-
image method (rendered by VolumePro 1000). The lung fibers are
substantially clearer and more detailed with the shear-image or-
der. Another difference from shear-warp is the ability to embed
polygon objects. The samples of the base plane of shear-warp are
not in one-to-one correspondence with the pixels of the image
plane, so it is difficult to embed polygons drawn in the context of
the image.2 The cost of shear-image order is a more complex
voxel stepper and four multiplication operations per sample inter-
polation instead of three.

2D texture methods are similar to shear-image methods, but
there are two key differences. First, 2D texture methods require
three separate copies of the volume, one for each dimension, to
allow for viewing at all view angles. The VolumePro implementa-
tion of shear-image order does not, because it can apply the Per-
mutation transformation on the fly, thereby by reading slices in
any dimension from the same 3D array of data. Second, shear-
image performs true tri-linear interpolation of the volume data.
That is, every sample value and gradient is obtained from its eight
nearest neighbors. This is a direct result of interpolating slices in
the permuted z-dimension first, and then interpolating in permuted

2 It would be possible to drawn the polygons in the graphics context of the base

plane, then warp them along with the image of the volume. However, this intro-
duces severe aliasing or requires substantial over-sampling.

// Co-routine voxelStepper.

Pre-load cache with voxel slices originZv−k, originZv−k+1,
…, originZv+k−1, and estimate gradients

for (int zs = 0, real zv = originZv; zs < lastSlice; zs++,
zv += dzvzs) {

if not voxel slice zv+k in cache then
{read slice zv+k and estimate gradients}

Bzs = next z-interpolated sample/gradient buffer

for (yv = minYv; yv<maxYv; yv++)
for (xv = minXv; xv<maxXv; xv++) {

Derive z-interpolated sample and gradient from
voxel positions (xv, yv, zv−k), …
(xv, yv, zv+k)

Write sample and gradient to Bzs[xv, yv]
}

Send Bzs to sampleStepper
} // end of voxelStepper

// Co-routine sampleStepper

for (int zs = 0, real xv = originXv, real yv = originYv, real Dv =
depth0; zs < lastSlice; zs++, xv+=dxvzs, yv+=dyvzs,
Dv+=dDzs) {

Get Bzs from voxelStepper

for (int ys = 0, real xvv = xv, real yvv = yv, real Dvv = Dv;
ys < lastRow; ys++, xvv+=dxvys, yvv+=dyvys,
Dvv+=dDys)

for (int xs = 0, real xvvv = xvv, real yvvv = yvv, real
Dvvv = Dvv; xs < lastColumn; xs++,
xvvv+=dxvxs, yvvv+=dyvxs, Dvvv+=dDxs) {

if (xs, ys, zs), Dvvv is visible then {
Derive value, gradient from Bzs[xvvv, yvvv]
Forward derived sample and gradient for

further processing and illumination
}

} // end of sampleStepper

Figure 6: The shear-image order algorithm

 6

x and y-dimensions within each slice. The basic 2D texture
method does these in the opposite order, than is by interpolating
first in the x and y-dimensions within a single 2D texture map,
then interpolating between texture maps using a multi-texture
technique [8]. This is not equivalent to tri-linear interpolation
unless rays happen to be perpendicular to the slices of the volume.
In other cases, the eight voxels that contribute to a sample would
not, in general, be part of a 2×2×2 cube of the volume. Instead,
they would be part of two 2×2 squares that could be offset from
each other in either or both of the x and y-dimensions. This intro-
duces artifacts that are not present with shear-image order, par-
ticularly when used to compute normal vectors for illumination.

On-the-fly gradient estimation to obtain normal vectors is
difficult in commodity graphics hardware, not for any conceptual
reason but because of the number of texture operations needed for
each gradient generates an enormous load on the texture subsys-
tem. The alternative is to pre-compute gradients when a volume is
loaded. This reduces the number of texture operations required
during rendering, but it quadruples the texture memory storage
and bandwidth requirements.

VolumePro 1000 includes other operations not shown in the
shear-image algorithm. For example, transfer functions may be
applied either before or after interpolation. Illumination functions
are also applied to highlight surfaces and create a realistic 3D
appearance. Filters may also be applied based on a number of
criteria to selectively enhance or suppress certain samples. For
example, Figure 8 in the color page shows how surfaces can be
highlighted by filtering out samples with small gradient magni-
tudes. This image is from a CT scan of a foot, and it highlights the
skins and bones at the same time.

4 EMBEDDING POLYGONS

Volume visualization applications often need to render vol-
ume and polygon data together. For example, a surgical planning
application might model a prosthetic device in a CAD environ-
ment, render it using conventional polygon graphics, and then
embed the device into a volume rendered image of the patient’s
body. Similarly, a geophysical application might render seismic
data as volume data but oil wells as polygons.

Figure 9 illustrates an example of a simple polygon object
passing through the cranial cavity of a human head as rendered
from a CT scan of a living person. The soft tissue of the brain has

been rendered transparent to expose the bone and blood vessels. It
can be seen that the polygon object lies in front of some parts of
the volume (e.g., blood vessels and bone) and behind other parts.
Various techniques have been used in the past to combine volume
and polygon data into the same image. In methods in which vol-
umes are converted to polygons, it is a simple matter to sort all of
the polygons and render them using conventional polygon graph-
ics. Another technique is to voxelize the polygon objects — i.e.,
convert them to voxels, then write them into the volume data set.

Figure 9: A polygon object embedded in a volume

Shear-image order makes it easy to use fast commodity
graphics chips to render polygons and embed them into volumes.
The polygons are rendered in the graphics environment using the
same Model, View, Projection, and Viewport transformations
shown in Figure 5. In particular, each polygon is scan-converted
to the viewport so that the centers of its pixels are accurately and
precisely aligned with the rays. When all of the polygons have
been rendered, the depth and color buffers are captured and are
used to control the following process:
• In the first pass, rays are initialized to the foreground color

and then cast through the volume starting at the foreground
and ending at the captured depth buffer. This renders the por-
tion of the volume in front of the depth buffer.

• The previously captured color buffer is then blended behind
the image plane resulting from the first pass.

• In the second pass, rays are initialized with the result of the
blend operation, then cast starting at the depth buffer and
terminating at the background. This renders the portion of the
volume behind the depth buffer.

The result is an image of the polygonal objects embedded within
the volume. These objects appear to the viewer to be in exactly the
right places relative to the volume, independently of whether the
polygons are opaque or translucent. Note also that in the case of
opaque polygons, only the first rendering pass is necessary.

Using two depth buffers, the process can be generalized to
arbitrary translucent geometry and to images of other objects,
provided that they can be expressed as an ordered sequence of
layers so that no two layers mutually obscure each other. This is
illustrated in Figure 10. The rectangle is a cross section of a vol-
ume data set in the xv- and zv-dimensions, and the yv-dimension is
perpendicular to the page. Similarly, the heavy line is an edge
view of the image plane showing the xi-dimension and showing its
pixels as × characters. The reader should imagine that the yi-

 Shear
Warp

Full image/
3D texture

2D
texture

Shear
image

Memory
Continuity

Yes

No Yes

Yes

Interpo-
lation

3 multi-
plications,
true tri-
linear

7 multipli-
cations,
true tri-
linear

3 multi-
plica-
tions,
bilinear
or
pseudo-
trilinear

4 multi-
plications,
true tri-
linear

Image
quality

Post-warp
from base
plane

Pixel-per-
sample

Pixel to
texture
slices

Pixel-per-
sample

Embedded
Geoemtry

No
alignment
between
base plane
and image
plane

Direct Direct Depth ad-
justment
per sam-
ple
directly to
pixel

 Table 1: Comparison of different volume rendering methods.

 7

dimension is perpendicular to the page. The curves depict edge
views of three translucent objects render using polygon graphics.
Rays are represented as arrows.

Note that from the DW transformation of Equation 3, the
depth value of each sample point (xs, ys, zs) is
 D(xs, ys, zs) = dDxs*xs + dDys*ys + dDzs*zs + depth0. (8)
The algorithm of Figure 6 keeps track of this for each sample in
the sampleStepper. This value can be used to compare with the
corresponding entry (xi, yi) of a depth buffer. Based on the depth
comparison, the sample can be included or excluded.

Let the two depth buffers be labeled D0 and D1. In the first
pass of Figure 10, D0 is initialized to the depth of the foreground,
while D1 is set to the depth buffer of the first layer of polygons.
The volume rendering parameters are set to select only samples
with depth values in the range [D0, D1) — i.e., samples (xs, ys, zs)
that satisfy
 D0[xs, ys] ≤ D(xs, ys, zs) < D1[xs, ys] . (9)
At the end of the pass, the first color buffer is blended behind the
image produced by the volume-rendering pass.

 (Pass 1) (Pass 2)

 (Pass 3) (Pass 4)

Figure 10: Embedding Polygon Objects

At the beginning of the second pass, the contents of D0 are
replaced by the contents of D1, and the depth buffer of the second
layer is loaded into D1. The rays are initialized to the blended
image from the previous pass, and the volume is rendered again,
selecting only the samples in the range [D0, D1). Then the second
color buffer is blended behind the result. This process is repeated
for each layer. In Figure 10, four passes are seen, with the por-
tions of the rays of the current pass highlighted and the rays of
previous passes shown in gray.

By this means, each polygon object is inserted pixel-by-pixel
between the samples along the rays. Obviously, the process must
be repeated for each change in view direction, model transforma-
tion, and other parameter. The method can also be extended to
embed images of non-polygon objects, both opaque and translu-
cent, provided that they can be expressed as a sequence of color
and depth buffers.

VolumePro 1000 supports dual depth buffers and a flexible
set of depth tests as part of the rendering engine. It also allows
depth buffers to be updated dynamically based on various condi-
tions. This is useful, for example, in creating a “depth mask” for
the visible surface or picking voxels of a volume. The basic vol-
ume-rendering algorithm of VolumePro 1000 is optimized to skip

efficiently over slices and groups of slices that would fail the
depth tests.

5 ANISOTROPIC AND SHEARED DATA

Anisotropic data sets — in which voxels are spaced differ-
ently in each dimension — are the rule rather than the exception in
medical and geophysical imaging. In seismic applications, for
example, distances on the surface of the earth are measured in
miles or kilometers, but the vertical direction into the earth is of-
ten measured in the time it takes to detect an echo. In CT (com-
puted tomography) scans, the spacing of slices in the longitudinal
axis of the patient is determined by the (adjustable) speed of the
table, while the spacing within a slice is determined by the geome-
try of the scanner. Also common are sheared data sets, in which
the axes are not at right angles to each other. For example, the
gantry of a CT scanner may be tilted with respect to the axis of the
patient.

The anisotropy and shear of a volume are described by its
Correction transformation of Figure 5 and therefore are taken into
account in the derivation of R in Section 3.2. These will position
sample points along rays according to the rendering parameters,
regardless of view direction, anisotropy and shear, thereby pro-
ducing a correct view of the volume. Most of the images in this
paper are rendered from anisotropic data sets.

By illuminating each sample point, a volume rendering sys-
tem can expose surfaces within the volume and give them a realis-
tic 3D appearance. These lighting calculations depend upon the
gradient at each sample point. It is easy to estimate gradients from
voxel values in a rectilinear volume using central differences or
other separable convolution kernel. High quality kernels are de-
scribed in [7]. Separable kernels have the advantage that each of
the three gradient components can be obtained independently.

The problem with anisotropic and sheared volume data is that
separable kernels produce gradients with the wrong direction,
wrong magnitude, or both. To obtain accurate gradients directly
from the volume data requires a full three-dimensional convolu-
tion, which is computationally prohibitive in a hardware accelera-
tor. Therefore, practical systems continue to use separable kernels
but correct gradients before using them in lighting calculations.

To derive the gradient correction, we consider an anisotropic
volume in both world space and voxel space. Figure 11 is a styl-
ized representation in two dimensions. The top left shows an ob-
ject in world space with its gradient, the light direction, and the
eye vector. The top right shows the same object in voxel space;
the volume appears distorted on account of its anisotropic sam-
pling, and the gradient points in the wrong direction. Therefore,
diffuse and specular lighting calculations would be incorrect if
done in this space.

Applications typically specify lights in world space. There-
fore, it would be sufficient to correct the gradient to world space
and use the world space versions of the light direction and eye
vector. However, even this simple correction would require a 3×3
matrix and nine multiplications per gradient. This was considered
to be an expensive use of space in the semiconductor implementa-
tion of VolumePro 1000, especially because multiple gradients are
processed in parallel.

An alternative is to decompose the Model×Correction trans-
formation into a shear-scale transformation and a rotation trans-
formation and to define a new intermediate coordinate system
called Lighting space. This decomposition is shown at the bottom
of Figure 11. The shear-scale transformation LS can be to convert
the gradient to lighting space, while the controlling software can

 8

transform its lighting calculations from world space to lighting
space by the rotation (LR)-1. This rotation preserves dot products
between vectors. From Figure 11, it follows that
 LR-1 × M × C = LS. (10)

Light
Gradient
Eye vector

Light Rotation
Matrix (LR)

Voxel space

World space

Model × Correction

Lighting space

Light Shear-Scale
Matrix (LS)

Figure 11: 2D Illustration of Lighting Space

Lighting space is a rotation of world space but a shear-scale of
voxel space. It is not the same as object space.

Mapping gradients of voxel space into surface normals in
lighting space requires the multiplication by (LS-1)T, that is, the
inverse transpose of the shear-scale lighting matrix. Therefore,
VolumePro 1000 includes a gradient correction matrix in hard-
ware of the form

()TLS
g
gg
ggg

G 1

33

2322

131211

00
0 −=
















=

to convert gradients into lighting space. This correction requires
six multiplications per gradient in the general case but only three
multiplications per gradient in non-sheared, anisotropic cases. It
should be noted that when lights rotate with the volume object,
the LS matrix does not change from frame to frame. This saves the
time needed to recompute light maps for each angle of rotation.

Figure 12 on the color page is a dramatic illustration of the
importance of illumination in volume rendering. This shows the
blood vessels in a human brain from an anisotropic CT scan of a
living person.

6 IMPLEMENTATION

VolumePro™ 1000 is a second-generation volume rendering
system that implements the shear-image order method. It com-
prises an ASIC (application-specific integrated circuit), a board
that can be plugged into the PCI bus of a personal computer or
workstation, and a library of controlling software. The board in-
cludes the ASIC and up to 2 gigabytes of high performance mem-
ory. The VolumePro 1000 is a generalization in many dimensions
of the VolumePro 500.

The VolumePro 1000 ASIC is the rendering engine imple-
mented as a semiconductor. It includes a Sequencer, four process-
ing pipelines, a memory controller, a PCI bus interface, on-chip

caches of various lookup tables, and on-chip buffers for voxels, z-
interpolated samples, pixels, and depth values. The ASIC imple-
ments the shear-image order algorithm of Figure 6, along with
other volume rendering functions including gradient estimation
and correction, classification, illumination, alpha correction, filter-
ing based on gradient magnitude and other properties, and cut and
crop planes. The Sequencer and processing pipelines operate at
250 MHz, so that the ASIC can render 109 samples per second.

Memory is organized so that 3D objects are stored as mini-
blocks of 2×2×2 voxel values, and 2D objects are stored as 2×2
stamps of pixel values. This allows sequences of related data val-
ues to be read or written in burst mode, thus maximizing the
available bandwidth of memory chips. The memory subsystem
itself comprises eight channels of 16-bit Double Data Rate Syn-
chronous DRAM (DDR-SDRAM) operating at 133-166 MHz.
Eight 16-bit voxels can be fetched or four 32-bit pixels can be
written per memory cycle. The net memory bandwidth is 4.2-5.3
gigabytes per second. Operational experience suggests that at least
50% more memory bandwidth should have been provided.

Each pipeline includes a gradient estimation module, a classi-
fier for mapping voxel values into RGBα pixel values, an interpo-
lator in two parts to execute the shear-image order algorithm, an
illuminator, and a compositor. The classifier and interpolator are
cross connected so that classification and interpolation can pro-
ceed in either order. There are functional as well as aesthetic rea-
sons where one order might be more appropriate than the other in
a particular application. Classification first mode is important
especially for rendering volumes with mask fields (for example,
fields indicate they are bones, vessels etc.).

Voxels may have up to four fields, programmable by the ap-
plication as to size, position, and format. Each field is associated
with its own lookup table for mapping field values to color and
opacity values. These can be combined by a hierarchical set of
arithmetic-logic units as described in [5]. The interpolator is linear
in the z-dimension and bi-linear in the x- and y-dimensions,
thereby requiring four multiplications per sample. There are seven
interpolation channels, one for each of the voxel fields or color-
opacity components plus one for each gradient component.

The illuminator is a reflectance map implementation of the
Phong module of lighting. It provides emissive, diffuse, and
specular lighting from an arbitrary number of light sources. It also
provides a modulation function based on the magnitude of the
gradient. The compositor provides alpha-blending, maximum and
minimum intensity projection, sum and count, and other functions
for combining sample values along rays. It includes an alpha-
correction function to adjust opacity values for different spacing
of samples. The compositor also implements an early ray termina-
tion test that stops processing of an individual ray when it reaches
a threshold of opacity.

VolumePro 1000 tries very hard to skip over samples that are
not visible. The Sequencer keeps track of portions of the volume
or image that are cut, cropped, clipped, or that fail depth tests, and
it jumps over them when it is useful to do so. This kind of space
leaping is called geometry-based space leaping because it depends
only upon the position of a sample, not its value. A second kind of
space leaping, called content-based space leaping because it
jumps over samples that are invisible by virtue of opacity assign-
ment or filtering, was not included in VolumePro 1000.

The actual performance of VolumePro 1000 is proportional
to the number of rays in the image plane and how quickly they
terminate. By contrast, VolumePro 500 performance is always
proportional to the number of voxels in the volume data set.

A dominant consideration in a semiconductor implementa-
tion of a volume-rendering algorithm is the amount of on-chip

 9

memory needed. Both the shear-warp algorithm and shear-image
order require one or more full slices of voxel values to be cached
on the chip. This is a severe constraint and one of the most impor-
tant factors in the ASIC design. Both generations of VolumePro
solve this problem by partitioning the volume data set into sec-
tions and by rendering the volume one section at a time. The
amount of on-chip memory is thus proportional to the number of
voxels and/or samples in a section.

VolumePro 1000 implements early ray termination on a sec-
tion-by-section basis. While it is rendering a section, it maintains
a bit map indicating which rays have reached a (programmable)
threshold of opacity. When the bit map is full, the section is ter-
minated and the next section is begun.

Figure 13 of the color page shows zoomed views of the ca-
rotid arteries rendered by VolumePro 1000. High image quality
with lighting shows the details of the image. Although a printed
article cannot show it, all of the images of this paper (except Fig-
ure 7, right) were generated at interactive speeds.3

7 CONCLUSIONS & FUTURE WORK

This paper describes the shear-image order ray-casting algo-
rithm along with its advantages in embedding polygon geometry
and direct rendering anisotropic and sheared volume. The paper
also introduces the implementation of this method in VolumePro
1000, which provides high image quality, high speed and various
advanced features. VolumePro 1000 supports the real-time vol-
ume visualization of large volume data sets for a variety of inter-
active applications. This paper only addresses parallel projections.

Two challenges in the implementation of a future generation
of VolumePro are content-based space leaping and ray-per-pixel
rendering in perspective projection. Content-based space leaping
can be implemented with a bit map indicating the spatial areas of
the volume object that are transparent and those that are not. The
challenge is providing enough on-chip memory for the bit map
and in accessing it fast enough to gain a performance benefit.

Efficient perspective rendering is needed maintain a sense of
the viewer’s position within the volume, for example in interac-
tive fly through of the colon. Both 2D texture methods and shear-
warp can be made to support perspective volume rendering, and
shear-warp methods can be efficient [2]. However, as in the paral-
lel projection, the need for a post warp step in perspective ver-
sions of shear-warp degrades the image quality. VolumePro 1000
currently supports perspective using a variation of shear-warp.

The shear-image algorithm can be adapted to support ray-
per-pixel perspective volume rendering. However, the image must
be partitioned to avoid rays that diverge so they become too
nearly parallel to slices of samples. The different partitions re-
quire different permutation matrices, and the slices of samples are
parallel to different faces of the same volume. As a result, the
volume must be rendered in multiple passes, one per partition. In
addition, sample spacing varies from ray to ray in perspective
projection. For high quality images, opacity values need to be
adjusted on a ray-by-ray basis. (A single opacity adjustment per
partition rays is used as an approximation in VolumePro 1000.)

Acknowledgements

This work began when all four authors were members of
Mitsubishi Electric Research Laboratories (MERL) of Cambridge,

3 The shear-image rendering of the lung was generated on a bit accurate simulator

of VolumePro 1000 prior to fabrication of the ASIC. It required about 75 hours.

Massachusetts. Authors Wu, Bhatia, and Lauer continued as
members of TeraRecon, Inc., after TeraRecon acquired the
VolumePro business from Mitsubishi Electric in 2001.

Jan Hardenbergh is a principal contributor to the architecture
of VolumePro and acted as our proofreader, advisor, conscience,
and chief image wrangler in the preparation of this paper. Through
her persistence as a user, Lisa S. Avila of Kitware forced us to get
the definition of Lighting Space right.

We would also like to thank James Foley, Sarah Frisken
(Gibson), Hanspeter Pfister, Vikram Simha, Andy Vesper, and T.
C. Zhao for their insight into the issues of real-time volume ren-
dering. Thanks are also due to Andy Adams, Bill Booth, Steve
Burgess, Kenneth Correll, James Knittel, Jeff Lussier, Bill Peet,
and Jay Wilkinson for making the VolumePro 1000 semiconduc-
tor and hardware a reality.

References

[1] Cabral, Brian; Cam, Nancy; Foran, Jim, “Accelerated volume
rendering and tomographic reconstruction using texture map-
ping hardware,” Proceedings of the 1994 symposium on Vol-
ume visualization, Tyson’s Corner, Virginia, USA, 1994.

[2] Brady, Jung, Nguyen H, Nguyen T. Two phase Perspective
Ray Casting for Interactive Volume Navigation. Visualiza-
tion 1997.

[3] Engel, Klaus; Kraus, Martin; Ertl, Thomas; “High-Quality
Pre-Integrated Volume Rendering using Hardware-
accelerated Pixel Shading,” Eurographics/SIGGraph Graph-
ics Hardware Workshop, 2001.

[4] Foley, James D., van Dam, Andries, Feiner, Steven K., and
Hughes, John F., Computer Graphics, Principles and Prac-
tice, Second Edition, Addison-Wesley, Reading, Massachu-
setts, 1987.

[5] Gasparakis, C. Multi-resolution Multi-field Ray Tracing: A
Mathematical Overview, Proceedings of the Conference on
Visualization 99, ACM SIGGRAPH, San Francisco, October
1999.

[6] Lacroute, Philipe, and Levoy, Marc. Fast Volume Rendering
Using a Shear-Warp Factorization of the Viewing Transfor-
mation. Proceedings of SIGGRAPH 94 (Orlando, Florida),
Computer Graphics Proceedings, Annual Conference Series,
pages 409–412. ACM SIGGRAPH, ACM Press, July 1994.

[7] Lichtenbelt, Barthold, Crane, Randy, Naqvi, Shaz, Introduc-
tion to Volume Rendering, Prentice-Hall PTR, Upper Saddle
River, New Jersey, 1998.

[8] Möller, Torsten, Mueller, Klaus, Kurzion, Yair, Machiraju,
Rahgu, and Yagel, Roni. Design of Accurate and Smooth Fil-
ters For Function and Derivative Reconstruction. Proceed-
ings of 1998 Symposium on Volume Visualization, ACM
SIGGRAPH, pp. 143-151, October 1998.

[9] Pfister, Hanspeter, Hardenbergh, Jan, Knittel, James, Lauer,
Hugh, and Seiler, Larry. The VolumePro Real-time Ray-
casting System. Proceedings of SIGGRAPH 99 (Los Ange-
les, California), pages 251-260, August 1999.

[10] Rezk-Salama, C.; Engle, Klaus; Bauer, M.; Greiner, G.; Ertl,
Thomas; “Interactive Volume Rendering on Standard PC
Graphics Hardware Using Multi-Textures and Multi-Stage
Rasterization,” Proceedings of 2000 Siggraph/Eurographics
Workshop on Graphics Hardware, Interlaken, Switzerland,
2000.

[11] Levoy, Marc. Display of surfaces from volume data.
IEEE CG&A 8(3), pp. 29-37.

Shear-Image Ray Casting Volume Rendering: Wu, Bhatia, Lauer, Seiler

 10

Figure 1: Shear-Image Rendering Gallery: Various volumes with lighting effects or embedded geometry

Figure 7: Comparison of shear-warp (left), and shear-image order (right)

 Figure 8: Gradient magnitude modulation Figure 12: An image of a cerebral aneurysm

Figure 13: Three zoomed views of the carotid arteries of the neck, showing the image quality of shear-image order

