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Abstract  

This paper describes shear-image order ray casting, a new 
method for volume rendering. This method renders sampled data 
in three dimensions with image quality equivalent to the best of 
ray-per-pixel volume rendering algorithms (full image order), 
while at the same time retaining computational complexity and 
spatial coherence near to that of the fastest known algorithm 
(shear-warp). In shear-image order, as in shear-warp, the volume 
data set is resampled along slices parallel to a face of the volume. 
Unlike shear-warp, but like the texture-based methods, rays are 
cast through the centers of pixels of the image plane and sample 
points are at the intersections of rays with each slice. As a result, 
no post-warp step is required. Unlike texture methods, which 
realize shear and warp by transformations in a commodity graph-
ics system, the shear-image ray casting methods use a new fac-
torization that preserves memory and interpolation efficiency. In 
addition, a method is provided for accurately and efficiently em-
bedding conventional polygon graphics and other objects into 
volumes. Both opaque and translucent polygons are supported.  

We also describe a method, included in shear-image order 
but applicable to other algorithms, for rendering anisotropic and 
sheared volume data sets directly with correct lighting. 

The shear-image order method has been implemented in the 
VolumePro™ 1000, a single chip real-time volume rendering 
engine capable of processing volume data at a pipeline rate of 109 
samples per second. Figure 1 on the color page shows a shear-
image order gallery of volumes rendered with different translu-
cency, lighting, and some embedded geometry. 
CR Categories and Subject Descriptors: I.3.1 [Computer 
Graphics]: Hardware Architecture; I.3.3 [Computer Graphics]: 
Picture/Image Generation; I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism; I.4.10 [Image Processing and 
Computer Vision]: Image Representation. 
Additional Keywords: Volume rendering; ray casting; shear 
warp; base plane; shear-image order; image order. 

1 INTRODUCTION 

Real-time volume rendering is a technique for creating inter-
active images of objects and phenomena represented as sampled 
data in three or more dimensions [7]. It is becoming increasingly 
important in medical imaging, seismic exploration, and scientific 
visualization, and it has potential applications in industrial inspec-
tion, non-destructive testing, airline security, and any area where 

it is important to see the internal or hidden structures of the ob-
jects under study. While volume rendering algorithms have been 
known for years, there are three principal challenges to achieving 
useful, interactive visualization: amassing enough computational 
power to render images at multiple frames per second; moving 
huge amounts of data from memory to the processing power; and 
providing high quality, visually meaningful images. 

In this paper, we introduce shear-image order volume render-
ing. Shear-image order inherits the ray-per-pixel feature of full 
image order; it is shear order as the x and y-axes of the sample 
space are sheared from the z-axis of image space (hence the name 
shear-image order). The shear-image order method eliminates 
shear-warp’s intermediate image and final warp step while pre-
serving the memory access efficiency of shear-warp. It produces 
high quality images by casting rays directly through the centers of 
pixels of the image plane. Shear-image order is efficient to com-
pute, requiring four interpolations per sample compared with three 
interpolations per sample for shear-warp and seven interpolations 
per sample for full image order. Shear-image order supports the 
accurate embedding of polygon and other objects, and it enables 
direct rendering of anisotropic and sheared data sets without the 
need for resampling. The shear-image order method is imple-
mented in VolumePro™ 1000, a second-generation real-time vol-
ume rendering engine.  

Section 2 of this paper briefly describes existing volume ren-
dering algorithms — shear-warp, full image order, and texture 
based volume rendering. Section 3 describes the shear-image 
order method, including its coordinate systems and transforma-
tions, the algorithm for stepping through the sample points in 
parallel with volume data for high performance and discussions 
relating it to different volume rendering methods. Section 4 de-
scribes how polygons and other objects can be accurately embed-
ded in the rendered image of the volume. Section 5 discusses ani-
sotropic and sheared volumes, which are common in the medical 
imaging field. Section 6 presents an overview of the VolumePro 
1000 hardware implementation. Section 7 presents conclusions 
and discusses future work. 

2 BACKGROUND 

This section provides a brief review of three important algo-
rithms for volume rendering — shear-warp, full image order, and 
texture based volume rendering.  

2.1 Shear-Warp Order 

One of the fastest classic algorithms for volume rendering is 
shear-warp [6]. In shear-warp, the 3D viewing matrix is factored 
into “a 3D shear parallel to slices of the volume data, a projection 
to form a distorted intermediate image, and a 2D warp to produce 
the final image” [6]. Shear-warp has the advantage of retrieving 
volume data from memory in a coherent manner, thereby maxi-
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mizing the utilization of memory bandwidth. It has the disadvan-
tages of requiring a final warp step and has an additional difficulty 
of accurately embedding polygons and images of other objects. 
VolumePro™ 500, the first commercial real-time volume-
rendering engine, is a hardware implementation of shear-warp 
with flexibility in the sampling frequency in the z-dimension [9].  

Figure 2 illustrates the shear-warp factorization. Voxel posi-
tions are shown as dots. The × characters represent sample points 
of the volume. The pixel locations are the intersections of the gray 
grid of Figure 2d. In Figure 2a, the axes of the volume data set are 
permuted so that the z-axis is most nearly parallel to and in the 
same direction as the rays. The volume is re-sampled along the 
rays with sample points organized in slices perpendicular to this 
permuted z-axis, contributing to the memory coherency. Both 
shear-image order and 2D texture methods share this feature.  

Within each slice, samples are organized in grids parallel to 
the grid of voxels. The volume is transformed by shearing each 
slice with respect to its neighbors (Figure 2b). Samples are then 
projected onto a plane parallel to those slices called the base plane 
(Figure 2c). The resulting image is then warped to produce the 
final image as shows in Figure 2d.  

The shear-warp factorization allows the rendering engine to 
fetch and process volume data in a sequence related to its storage 
in memory, thereby using both memory bandwidth and recently 
retrieved voxel data efficiently. In addition, interpolation opera-
tions can be shared among adjacent samples in the same slice: 
four neighbors in each slice share one interpolated value in the 
permuted z direction, and two neighbors share an interpolated 
value in a second dimension within the slice. Therefore, shear-
warp method realizes tri-linear interpolation with three multiplica-
tions per sample, one multiplication per dimension.  
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Figure 2: Shear-warp  

It is possible to achieve high quality images using shear-
warp. However, doing so requires over-sampling the volume data 
set to compensate for distortion in the warp step and high preci-
sion calculation to reduce error propagation between the sampling 
stages. These requirements impact performance. Furthermore, the 
mismatch between pixels in the base plane and the image plain 
makes it difficult to embed polygons into rendered volumes.  

2.2 Full Image Order 

Another class of ray-casting methods is often called image 
order, but is referred in this paper as full image order in order to 
emphasis the difference from shear-image order. In full image 

order methods, rays are cast through the centers of pixels of the 
image plane (Figure 3b) and samples are organized into planes 
parallel to the image plane (Figure 3a). These methods eliminate 
the need for the final warp step of shear-warp methods, and they 
can produce high quality images without over-sampling the vol-
ume. However, the cost is increased complexity in data handling 
and buffering and the loss of coherent patterns of memory ac-
cesses. Moreover, interpolations cannot, in general, be shared 
between adjacent samples so seven multiplications are needed to 
derive sample values by tri-linear interpolation (four in the 1st 
interpolation dimension, two in the 2nd dimension and one in the 
3rd dimension). As a result, full image order methods are not yet 
competitive in performance with shear-warp methods, even using 
hardware acceleration.  
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Figure 3: Full Image Order 

2.3 Texture Map Methods 

Texture map methods have been widely discussed in the lit-
erature (see [1], [11]). These can be partitioned into 3D texture 
methods and 2D texture methods. 3D texture methods are concep-
tually simple and much like full image order. The volume data set 
is stored in the 3D texture memory of a conventional polygon 
graphics system. To render the volume from a particular point of 
view, a set of polygons collectively called the proxy geometry is 
defined to represent slices parallel to the image plane. These poly-
gons are rasterized and texture mapped by the 3D texture to pro-
duce sample values. These samples are then accumulated in a 
frame buffer using ordinary alpha blending. 

This is equivalent to ray casting where all of the rays are ad-
vanced in parallel, one slice of proxy geometry at a time. The 
fragments of each slice are derived from the texture map by tri-
linear interpolation, using the interpolation machinery that is in-
herently part of 3D texture map systems. Each sample point is 
naturally aligned with a pixel on the image plane, so no further 
processing is required. It is also easy to embed polygonal objects 
by simply drawing them along with the proxy geometry. 

This method can produce high quality images if the spacing 
of the slices of proxy geometry is sufficiently close or if pre-
integration is used [3]. However, there is little memory coherency 
in the interpolation process, so performance can be challenging. In 
addition, there is no natural way for the algorithm to determine 
whether any particular ray can to be terminated early, for example 
because it has already reached maximum opacity. 

There are two major impediments that prevent 3D texture 
mapping on commodity graphics chips from being the preferred 
method of volume rendering. First, modern graphics chips require 
very specialized, high bandwidth memory devices. Currently, 
these come in very small sizes — 128 megabits — and cannot be 
cascaded because of timing demands. Therefore, these graphics 
chips cannot support the large data sets usually found in medical 
and geophysical applications, e.g., one gigabyte or more. The 
second impediment is the estimation of gradients for illumination. 
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2D texture methods for volume rendering are more complex 
than 3D texture methods, but they are useful on graphics hardware 
that has only 2D texture support. Typically, a volume data set is 
partitioned into slices three times, once for each axis. Then each 
slice from each dimension is loaded into a separate 2D texture 
map. To render a volume, proxy geometry is generated once for 
each slice, rasterized, textured by the map corresponding to that 
slice and orientation, then accumulated by blending in a frame 
buffer. The 2D texture methods suffer the same limitations as 3D 
texture methods. In addition, each volume data set needs to be 
stored three times, increasing the total memory requirement. 

3 SHEAR-IMAGE RAY CASTING 

Shear-image ray casting preserves shear-warp’s organization 
of sample points in slices parallel to the slices of the volume, but 
it casts rays directly through the centers of pixels of the image 
plane, as in full image order. It thereby eliminates the intermedi-
ate image and final warp step of shear-warp. It is similar to 2D 
texture methods in that the rays are cast from the screen plane 
onto slices parallel to a face of the volume. However, the shear-
image method explicitly decomposes the 3D viewing transforma-
tion into two matrices: a transformation from voxel coordinates to 
an intermediate coordinate system called sample space that is 
aligned with the pixels of the image or screen; and a transforma-
tion to adjust depth values of sample points to reflect their dis-
tances from the image plane or other reference point. The explicit 
decomposition has four beneficial features: (1) sample space is 
spatially coherent with both image or screen coordinates and with 
the voxel coordinates; (2) intermediate samples are cast directly 
from screen plane and can therefore blended without additional 
error propagation and image distortion; (3) the depth warp allows 
the embedding of polygons by comparing depths of samples with 
those of fragments of the polygons; (4) and super sampling factors 
can be controlled in a very flexible way, allowing in equal sample 
spacing in three dimensions for any view angle.  
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Figure 4: Shear-Image 
In Figure 4, sample points (×) are organized into slices parallel to 
a face of the volume (i.e., normal to the permuted z axis), as 
shown in Figure 4a, similar to Figure 2a. Samples within each 
slice are located at points where the rays passing through pixels 
on the image plane intersect the slice. Figure 4b shows the sample 
grid xs and ys are not parallel to the permuted voxel grid xv and yv. 
Indeed, the shear-image method has the same screen view image 
as full image order (Figure 3b): the sample grid is aligned with the 
screen pixels. However, due to the shear between screen and sam-
ple space in the permuted z dimension, a separate calculation is 
needed to obtain the depth of each sample.  

The memory coherence of shear-image method also applies 
to gradient interpolation. Gradients are estimated at voxel points 
by central difference or another convolution. Gradients at sample 
points are derived by tri-linear interpolation, in parallel with de-

riving sample values. Our method considers the gradient calcula-
tion for anisotropic data, which is described further in Section 5. 

The shear-image algorithm operates in two parts. The first 
part operates like shear-warp by stepping through volume mem-
ory one slice at a time. It interpolates between adjacent voxel 
slices to obtain slices of what we call z-interpolated samples — 
that is, sample values resulting from interpolation only in the z-
dimension of the volume. Since there has not yet been any inter-
polation in the other two dimensions, these z-interpolated samples 
are organized in a grid parallel to the x- and y-dimensions of the 
volume. 

The second part of the algorithm steps through each slice of 
z-interpolated samples in the x- and y-dimensions of the sample 
space. It enumerates the sample points (i.e., the intersections of 
rays with the slice), and it derives color and opacity values for 
each one from the z-interpolated samples of that slice. These sam-
ples are accumulated along their respective rays, thereby produc-
ing rendering of the volume directly on the image plane.  

The algorithm also associates with each sample point a depth 
value to measure the distance from the sample point to the eye or 
some other reference. These depth values correspond to the z-
values of traditional polygon graphics and are used for embedding 
polygons in the rendered image as described in Section 4. 

3.1  Coordinate Systems and terms 

To precisely define shear-image order, we illustrate various 
coordinate systems and transformations as well as the terms used 
in this paper. These are illustrated in Figure 5. 

World space, Camera or Eye space, Normalized Device co-
ordinates, and Image space are coordinate systems commonly 
understood in computer graphics [4]. Likewise, an application 
specifies the position, orientation, scale, and view of the volume 
object to be rendered using the Model, View, Projection, and 
Viewport transformations of the underlying graphics environment.  

For shear-image order rendering, we introduce voxel space 
as the coordinate system of the 3D array of voxel data; voxels are 
at integer positions in this space, regardless of the coordinate sys-
tem in which the data was obtained. Object space is a 3D Carte-
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Figure 5: The coordinate systems of shear-image order rendering
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sian coordinate system of the volume based on a local origin. The 
Correction transformation maps voxel space to object space, cor-
recting for anisotropy and shear in the sampling process. Per-
muted voxel space is a permutation of voxel space in which the 
axes are rearranged so that the z-axis is most nearly parallel to the 
rays and in the same direction. It is introduced primarily to avoid 
singularities in solving for the unknowns in the following sec-
tions. Sample space is the coordinate system of sample points; 
each sample is located at an integer position in sample space. 

In this paper, the axes of permuted voxel space are labeled 
xv, yv, and zv. The axes of image space are denoted in this paper by 
xi, yi, and D (for depth). The axes of sample space are labeled xs, 
ys, and zs. A crucial identity is that xs = xi, and ys = yi. The origin 
of sample space corresponds to (xi = 0, yi = 0, D = depth0), where 
depth0 is the depth value of the near plane of the viewport. 

Figure 5 shows two hierarchies of transformations mapping 
voxel space to image space. The Correction transformation and 
the traditional transformations of computer graphics are on the 
left. The three transformations of shear-image order rendering are 
on the right, namely, the Permutation transformation for rearrang-
ing the axes, the Resampling transformation for mapping per-
muted voxel coordinates to sample space, and the Depth trans-
formation for mapping the zs-coordinate of sample space to the D-
axis of image space. 

3.2 Derivation of rendering parameters 

When an application requests the rendering of a volume by 
the shear-image order method, it must specify the Correction 
transformation, the graphics transformations on the left side of 
Figure 5, depth0, and the spacing of sample points along rays.1 
From Figure 5, it can be seen that  
 VP × P × V × M × C = DW × R × PM. (1) 
That is, a mapping of a point or vector in voxel space by the con-
ventional graphics transformations, augmented by the Correction 
transformation, must produce the same result as the transforma-
tions implemented by the shear-image order engine. 

Let Mp = VP × P × V × M × C × (PM)-1. Observe that Mp is a 
linear mapping of one three-dimensional space into another and 
therefore can be expressed in homogeneous coordinates as a ma-
trix comprising four column vectors. The first three vectors define 
how unit vectors in the three dimensions of the source space (i.e., 
permuted voxel space) map into the target space (i.e., image 
space). The fourth vector maps the origin of the source space to a 
point in the target space. Therefore, Mp can be represented as 
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where dxixv, dxiyv, dxizv, etc., represent incremental changes in the 
x-dimension of image space causes by unit steps in the x-, y-, and 
z-dimensions of voxel space, respectively, and where X0

i,v, Y0
i,v, 

and D0
i,v, are image space coordinates of the origin of voxel space. 

From Equation 1, Mp = DW × R. From the definition of sam-
ple space, the xs- and ys-values are exactly the same as the xi- and 
yi-values of image space. By definition, the depth transformation 
DW only transforms the zs-axis and leaves the xs- and ys-axes un-
changed. Therefore, DW can be written as 
                                                                 
1  The spacing of samples along rays may be adjusted to trade off rendering speed 

vs. image quality. A reasonable default is that the distance between adjacent sam-
ples on a ray be approximately equal to the distance between adjacent rays. 
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In Equation 3, dDzs and depth0 are known from the spacing of 
sample points along rays and the definition of the origin of sample 
space, respectively. This leaves only dDxs and dDys as unknowns. 

Similarly, R transforms permuted voxel space into sample 
space and can therefore be written as the matrix 
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From Equations 2 and 3 and the definition of sample space, it can 
be seen that the first two rows of R are identical to the first two 
rows of Mp, with xs and ys being substituted for xi and yi, respec-
tively. The third row of R has zeros in the first two columns be-
cause sample slices are parallel to voxel slices — i.e., a unit step 
in either the xv- or yv-dimension of permuted voxel space produces 
no change in the zs-dimension of sample space. This leaves two 
unknowns in R, namely dzszv and Z0

s,v. 
Taking advantage of the fact that the lower left quadrant of R 

is zero, Equations 3 and 4 can be solved for dDxs and dDys by 
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Finally, R can be solved for its two remaining unknowns, namely 
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This derivation leads to a simple and efficient implementation, as 
described in the next section. 

3.3 Shear-image order algorithm 

The heart of shear-image order is a digital difference algo-
rithm that steps through sample space one slice at a time, and 
within slices one row at a time, and within rows one sample at a 
time — i.e., it increments in the zs-dimension most slowly, the ys-
dimension next, and the xs-dimension most quickly. This is in 
contrast to many other ray casting algorithms, which follow one 
ray to its end before considering another ray. The increments for 
stepping turn out to be the entries of the inverse of R, i.e., R-1. 
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Figure 6 shows the shear-image order algorithm in the form 
of two co-routines. In this figure, k is the number of slices that 
must be buffered ahead in order to estimate gradients and interpo-
late voxel values and gradients in the zv-dimension. The two co-
routines are: 
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• A voxelStepper routine that steps through the volume data set 
in slice major order in permuted voxel space. It reads ahead 
by k voxel slices, estimates gradients at each voxel point, and 
forms slices of z-interpolated samples and gradients that it 
sends to the other co-routine, the sampleStepper. By this 
means, the voxelStepper can process volume data in a mem-
ory-coherent way at very high speeds. 

• A sampleStepper routine that processes each slice in the 
order of the x- and y-axes of sample space, which is aligned 
with pixels of the image plane. It keeps track of the permuted 
voxel coordinates of each sample, performs visibility tests on 
the sample point, and derives the sample value by 2D inter-
polation of the z-interpolated samples and gradients in the 
slice buffer passed by the voxelStepper.  

The sample stepper can also test for early termination of a group 
of rays. If all of the rays of the group reach a threshold of opacity, 
it stops processing that group and notifies the voxel stepper to 
skip over the remaining voxels associated with that group. 

3.4 Discussion 

In volume rendering, images of interior structures are gener-
ated by assigning different opacities to different types of tissue or 

materials. The interfaces between different opacity levels create 
the appearance of 3D shapes. In our experience, the two most 
important factors in achieving high quality, visually meaningful 
images are the ability to cast rays through the centers of the pixels 
of the image plane and a good illumination function. Ray-per-
pixel rendering avoids the artifacts and degradation that result 
from repeated resampling, especially with gradient calculation. In 
this section, we compare the shear-warp, full image order, texture 
methods and shear-image order volume rendering with respect to 
image quality, illumination, and memory efficiency. Table 1 on 
the next page shows a summary of these comparisons. 

Full image order cay casting provides a natural sampling for 
ray-per-pixel image quality. Besides high image quality in gen-
eral, it is easy to generate Multi-Planar Reconstructions (MPR’s), 
the cross sections of the human body that are widely used in 
medical diagnosis. Because the fragments of the proxy geometry 
are naturally aligned with pixels on the image plane, it is also easy 
to embed polygon objects in a view of a volume. The cost of full 
image order rendering is loss of memory coherency and the seven 
interpolation operations needed for each component of each sam-
ple. 3D texture volume rendering is the only cost effective imple-
mentation of full image order to date on modern 3D graphics 
chips, and these have other limitations (see Section 2.3).  

By comparison, shear-image order keeps the ray-per-pixel 
feature of full image order rendering, thus preserving high image 
quality with or without lighting. The new factorization improves 
memory coherence and reduces interpolation cost to four multipli-
cations per component per sample. However, it is more difficult in 
shear-image order to create accurate MPR’s at arbitrary angles to 
the volume. This is because sample slices are not, in general, par-
allel to the MPR angle, so a cut plane through the volume must be 
used, along with a falloff filter at the edges. Shear-image order 
also requires a view-dependent alpha correction, if we choose to 
keep a constant sampling distance in permuted z direction.  

The fundamental difference between shear-warp and shear-
image order is that shear-image order allows rotation and shear of 
the sampling plane onto which rays are projected. This avoids the 
post warp inherent in shear-warp, thereby enhancing the image 
quality, especially for images with illumination and fine details. 
Figure 7 on the color page shows a comparison of image quality 
between shear-warp (rendered by VolumePro 500) and the shear-
image method (rendered by VolumePro 1000). The lung fibers are 
substantially clearer and more detailed with the shear-image or-
der. Another difference from shear-warp is the ability to embed 
polygon objects. The samples of the base plane of shear-warp are 
not in one-to-one correspondence with the pixels of the image 
plane, so it is difficult to embed polygons drawn in the context of 
the image.2 The cost of shear-image order is a more complex 
voxel stepper and four multiplication operations per sample inter-
polation instead of three.  

2D texture methods are similar to shear-image methods, but 
there are two key differences. First, 2D texture methods require 
three separate copies of the volume, one for each dimension, to 
allow for viewing at all view angles. The VolumePro implementa-
tion of shear-image order does not, because it can apply the Per-
mutation transformation on the fly, thereby by reading slices in 
any dimension from the same 3D array of data. Second, shear-
image performs true tri-linear interpolation of the volume data. 
That is, every sample value and gradient is obtained from its eight 
nearest neighbors. This is a direct result of interpolating slices in 
the permuted z-dimension first, and then interpolating in permuted 
                                                                 
2  It would be possible to drawn the polygons in the graphics context of the base 

plane, then warp them along with the image of the volume. However, this intro-
duces severe aliasing or requires substantial over-sampling. 

// Co-routine voxelStepper. 
 

Pre-load cache with voxel slices originZv−k, originZv−k+1, 
…, originZv+k−1, and estimate gradients 

for (int zs = 0, real zv = originZv; zs < lastSlice; zs++,  
zv += dzvzs)  { 

if not voxel slice zv+k in cache then 
{read slice zv+k  and estimate gradients} 

Bzs = next z-interpolated sample/gradient buffer 
 

for (yv = minYv; yv<maxYv; yv++) 
for (xv = minXv; xv<maxXv; xv++) { 

Derive z-interpolated sample and gradient from 
voxel positions (xv, yv, zv−k), … 
(xv, yv, zv+k) 

Write sample and gradient to Bzs[xv, yv] 
} 

Send Bzs to sampleStepper 
} // end of voxelStepper 

// Co-routine sampleStepper 
 

for (int zs = 0, real xv = originXv, real yv = originYv, real Dv = 
depth0; zs < lastSlice; zs++, xv+=dxvzs, yv+=dyvzs, 
Dv+=dDzs) { 

Get Bzs from voxelStepper 

for (int ys = 0, real xvv = xv, real yvv = yv, real Dvv = Dv; 
ys < lastRow; ys++, xvv+=dxvys, yvv+=dyvys, 
Dvv+=dDys) 

for (int xs = 0, real xvvv = xvv, real yvvv = yvv, real 
Dvvv = Dvv; xs < lastColumn; xs++, 
xvvv+=dxvxs, yvvv+=dyvxs, Dvvv+=dDxs) { 

if (xs, ys, zs), Dvvv is visible then { 
Derive value, gradient from Bzs[xvvv, yvvv] 
Forward derived sample and gradient for 

further processing and illumination 
} 

} // end of sampleStepper 

Figure 6: The shear-image order algorithm 
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x and y-dimensions within each slice. The basic 2D texture 
method does these in the opposite order, than is by interpolating 
first in the x and y-dimensions within a single 2D texture map, 
then interpolating between texture maps using a multi-texture 
technique [8]. This is not equivalent to tri-linear interpolation 
unless rays happen to be perpendicular to the slices of the volume. 
In other cases, the eight voxels that contribute to a sample would 
not, in general, be part of a 2×2×2 cube of the volume. Instead, 
they would be part of two 2×2 squares that could be offset from 
each other in either or both of the x and y-dimensions. This intro-
duces artifacts that are not present with shear-image order, par-
ticularly when used to compute normal vectors for illumination. 

On-the-fly gradient estimation to obtain normal vectors is 
difficult in commodity graphics hardware, not for any conceptual 
reason but because of the number of texture operations needed for 
each gradient generates an enormous load on the texture subsys-
tem. The alternative is to pre-compute gradients when a volume is 
loaded. This reduces the number of texture operations required 
during rendering, but it quadruples the texture memory storage 
and bandwidth requirements. 

VolumePro 1000 includes other operations not shown in the 
shear-image algorithm. For example, transfer functions may be 
applied either before or after interpolation. Illumination functions 
are also applied to highlight surfaces and create a realistic 3D 
appearance. Filters may also be applied based on a number of 
criteria to selectively enhance or suppress certain samples. For 
example, Figure 8 in the color page shows how surfaces can be 
highlighted by filtering out samples with small gradient magni-
tudes. This image is from a CT scan of a foot, and it highlights the 
skins and bones at the same time.  

4 EMBEDDING POLYGONS 

Volume visualization applications often need to render vol-
ume and polygon data together. For example, a surgical planning 
application might model a prosthetic device in a CAD environ-
ment, render it using conventional polygon graphics, and then 
embed the device into a volume rendered image of the patient’s 
body. Similarly, a geophysical application might render seismic 
data as volume data but oil wells as polygons. 

Figure 9 illustrates an example of a simple polygon object 
passing through the cranial cavity of a human head as rendered 
from a CT scan of a living person. The soft tissue of the brain has 

been rendered transparent to expose the bone and blood vessels. It 
can be seen that the polygon object lies in front of some parts of 
the volume (e.g., blood vessels and bone) and behind other parts. 
Various techniques have been used in the past to combine volume 
and polygon data into the same image. In methods in which vol-
umes are converted to polygons, it is a simple matter to sort all of 
the polygons and render them using conventional polygon graph-
ics. Another technique is to voxelize the polygon objects — i.e., 
convert them to voxels, then write them into the volume data set. 

 
Figure 9: A polygon object embedded in a volume 

Shear-image order makes it easy to use fast commodity 
graphics chips to render polygons and embed them into volumes. 
The polygons are rendered in the graphics environment using the 
same Model, View, Projection, and Viewport transformations 
shown in Figure 5. In particular, each polygon is scan-converted 
to the viewport so that the centers of its pixels are accurately and 
precisely aligned with the rays. When all of the polygons have 
been rendered, the depth and color buffers are captured and are 
used to control the following process:  
• In the first pass, rays are initialized to the foreground color 

and then cast through the volume starting at the foreground 
and ending at the captured depth buffer. This renders the por-
tion of the volume in front of the depth buffer.  

• The previously captured color buffer is then blended behind 
the image plane resulting from the first pass. 

• In the second pass, rays are initialized with the result of the 
blend operation, then cast starting at the depth buffer and 
terminating at the background. This renders the portion of the 
volume behind the depth buffer. 

The result is an image of the polygonal objects embedded within 
the volume. These objects appear to the viewer to be in exactly the 
right places relative to the volume, independently of whether the 
polygons are opaque or translucent. Note also that in the case of 
opaque polygons, only the first rendering pass is necessary. 

Using two depth buffers, the process can be generalized to 
arbitrary translucent geometry and to images of other objects, 
provided that they can be expressed as an ordered sequence of 
layers so that no two layers mutually obscure each other. This is 
illustrated in Figure 10. The rectangle is a cross section of a vol-
ume data set in the xv- and zv-dimensions, and the yv-dimension is 
perpendicular to the page. Similarly, the heavy line is an edge 
view of the image plane showing the xi-dimension and showing its 
pixels as × characters. The reader should imagine that the yi-
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  Table 1: Comparison of different volume rendering methods.
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dimension is perpendicular to the page. The curves depict edge 
views of three translucent objects render using polygon graphics. 
Rays are represented as arrows. 

Note that from the DW transformation of Equation 3, the 
depth value of each sample point (xs, ys, zs) is  
 D(xs, ys, zs) = dDxs*xs + dDys*ys + dDzs*zs + depth0.  (8) 
The algorithm of Figure 6 keeps track of this for each sample in 
the sampleStepper. This value can be used to compare with the 
corresponding entry (xi, yi) of a depth buffer. Based on the depth 
comparison, the sample can be included or excluded. 

Let the two depth buffers be labeled D0 and D1. In the first 
pass of Figure 10, D0 is initialized to the depth of the foreground, 
while D1 is set to the depth buffer of the first layer of polygons. 
The volume rendering parameters are set to select only samples 
with depth values in the range [D0, D1) — i.e., samples (xs, ys, zs) 
that satisfy  
    D0[xs, ys] ≤ D(xs, ys, zs) < D1[xs, ys] .    (9) 
At the end of the pass, the first color buffer is blended behind the 
image produced by the volume-rendering pass. 

   
 (Pass 1) (Pass 2) 

   
 (Pass 3) (Pass 4) 

Figure 10: Embedding Polygon Objects 

At the beginning of the second pass, the contents of D0 are 
replaced by the contents of D1, and the depth buffer of the second 
layer is loaded into D1. The rays are initialized to the blended 
image from the previous pass, and the volume is rendered again, 
selecting only the samples in the range [D0, D1). Then the second 
color buffer is blended behind the result. This process is repeated 
for each layer. In Figure 10, four passes are seen, with the por-
tions of the rays of the current pass highlighted and the rays of 
previous passes shown in gray. 

By this means, each polygon object is inserted pixel-by-pixel 
between the samples along the rays. Obviously, the process must 
be repeated for each change in view direction, model transforma-
tion, and other parameter. The method can also be extended to 
embed images of non-polygon objects, both opaque and translu-
cent, provided that they can be expressed as a sequence of color 
and depth buffers. 

VolumePro 1000 supports dual depth buffers and a flexible 
set of depth tests as part of the rendering engine. It also allows 
depth buffers to be updated dynamically based on various condi-
tions. This is useful, for example, in creating a “depth mask” for 
the visible surface or picking voxels of a volume. The basic vol-
ume-rendering algorithm of VolumePro 1000 is optimized to skip 

efficiently over slices and groups of slices that would fail the 
depth tests.  

5 ANISOTROPIC AND SHEARED DATA 

Anisotropic data sets — in which voxels are spaced differ-
ently in each dimension — are the rule rather than the exception in 
medical and geophysical imaging. In seismic applications, for 
example, distances on the surface of the earth are measured in 
miles or kilometers, but the vertical direction into the earth is of-
ten measured in the time it takes to detect an echo. In CT (com-
puted tomography) scans, the spacing of slices in the longitudinal 
axis of the patient is determined by the (adjustable) speed of the 
table, while the spacing within a slice is determined by the geome-
try of the scanner. Also common are sheared data sets, in which 
the axes are not at right angles to each other. For example, the 
gantry of a CT scanner may be tilted with respect to the axis of the 
patient.  

The anisotropy and shear of a volume are described by its 
Correction transformation of Figure 5 and therefore are taken into 
account in the derivation of R in Section 3.2. These will position 
sample points along rays according to the rendering parameters, 
regardless of view direction, anisotropy and shear, thereby pro-
ducing a correct view of the volume. Most of the images in this 
paper are rendered from anisotropic data sets. 

By illuminating each sample point, a volume rendering sys-
tem can expose surfaces within the volume and give them a realis-
tic 3D appearance. These lighting calculations depend upon the 
gradient at each sample point. It is easy to estimate gradients from 
voxel values in a rectilinear volume using central differences or 
other separable convolution kernel. High quality kernels are de-
scribed in [7]. Separable kernels have the advantage that each of 
the three gradient components can be obtained independently. 

The problem with anisotropic and sheared volume data is that 
separable kernels produce gradients with the wrong direction, 
wrong magnitude, or both. To obtain accurate gradients directly 
from the volume data requires a full three-dimensional convolu-
tion, which is computationally prohibitive in a hardware accelera-
tor. Therefore, practical systems continue to use separable kernels 
but correct gradients before using them in lighting calculations.  

To derive the gradient correction, we consider an anisotropic 
volume in both world space and voxel space. Figure 11 is a styl-
ized representation in two dimensions. The top left shows an ob-
ject in world space with its gradient, the light direction, and the 
eye vector. The top right shows the same object in voxel space; 
the volume appears distorted on account of its anisotropic sam-
pling, and the gradient points in the wrong direction. Therefore, 
diffuse and specular lighting calculations would be incorrect if 
done in this space. 

Applications typically specify lights in world space. There-
fore, it would be sufficient to correct the gradient to world space 
and use the world space versions of the light direction and eye 
vector. However, even this simple correction would require a 3×3 
matrix and nine multiplications per gradient. This was considered 
to be an expensive use of space in the semiconductor implementa-
tion of VolumePro 1000, especially because multiple gradients are 
processed in parallel. 

An alternative is to decompose the Model×Correction trans-
formation into a shear-scale transformation and a rotation trans-
formation and to define a new intermediate coordinate system 
called Lighting space. This decomposition is shown at the bottom 
of Figure 11. The shear-scale transformation LS can be to convert 
the gradient to lighting space, while the controlling software can 
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transform its lighting calculations from world space to lighting 
space by the rotation (LR)-1. This rotation preserves dot products 
between vectors. From Figure 11, it follows that 
  LR-1 × M × C = LS. (10) 

 

Light  
Gradient  
Eye vector 

Light Rotation 
Matrix (LR) 

Voxel space 

World space  

Model × Correction 

Lighting space 

Light Shear-Scale 
Matrix (LS) 

 
Figure 11: 2D Illustration of Lighting Space 

Lighting space is a rotation of world space but a shear-scale of 
voxel space. It is not the same as object space. 

Mapping gradients of voxel space into surface normals in 
lighting space requires the multiplication by (LS-1)T, that is, the 
inverse transpose of the shear-scale lighting matrix. Therefore, 
VolumePro 1000 includes a gradient correction matrix in hard-
ware of the form 
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to convert gradients into lighting space. This correction requires 
six multiplications per gradient in the general case but only three 
multiplications per gradient in non-sheared, anisotropic cases. It 
should be noted that when lights rotate with the volume object, 
the LS matrix does not change from frame to frame. This saves the 
time needed to recompute light maps for each angle of rotation.  

Figure 12 on the color page is a dramatic illustration of the 
importance of illumination in volume rendering. This shows the 
blood vessels in a human brain from an anisotropic CT scan of a 
living person. 

6 IMPLEMENTATION 

VolumePro™ 1000 is a second-generation volume rendering 
system that implements the shear-image order method. It com-
prises an ASIC (application-specific integrated circuit), a board 
that can be plugged into the PCI bus of a personal computer or 
workstation, and a library of controlling software. The board in-
cludes the ASIC and up to 2 gigabytes of high performance mem-
ory. The VolumePro 1000 is a generalization in many dimensions 
of the VolumePro 500. 

The VolumePro 1000 ASIC is the rendering engine imple-
mented as a semiconductor. It includes a Sequencer, four process-
ing pipelines, a memory controller, a PCI bus interface, on-chip 

caches of various lookup tables, and on-chip buffers for voxels, z-
interpolated samples, pixels, and depth values. The ASIC imple-
ments the shear-image order algorithm of Figure 6, along with 
other volume rendering functions including gradient estimation 
and correction, classification, illumination, alpha correction, filter-
ing based on gradient magnitude and other properties, and cut and 
crop planes. The Sequencer and processing pipelines operate at 
250 MHz, so that the ASIC can render 109 samples per second.  

Memory is organized so that 3D objects are stored as mini-
blocks of 2×2×2 voxel values, and 2D objects are stored as 2×2 
stamps of pixel values. This allows sequences of related data val-
ues to be read or written in burst mode, thus maximizing the 
available bandwidth of memory chips. The memory subsystem 
itself comprises eight channels of 16-bit Double Data Rate Syn-
chronous DRAM (DDR-SDRAM) operating at 133-166 MHz. 
Eight 16-bit voxels can be fetched or four 32-bit pixels can be 
written per memory cycle. The net memory bandwidth is 4.2-5.3 
gigabytes per second. Operational experience suggests that at least 
50% more memory bandwidth should have been provided. 

Each pipeline includes a gradient estimation module, a classi-
fier for mapping voxel values into RGBα pixel values, an interpo-
lator in two parts to execute the shear-image order algorithm, an 
illuminator, and a compositor. The classifier and interpolator are 
cross connected so that classification and interpolation can pro-
ceed in either order. There are functional as well as aesthetic rea-
sons where one order might be more appropriate than the other in 
a particular application. Classification first mode is important 
especially for rendering volumes with mask fields (for example, 
fields indicate they are bones, vessels etc.). 

Voxels may have up to four fields, programmable by the ap-
plication as to size, position, and format. Each field is associated 
with its own lookup table for mapping field values to color and 
opacity values. These can be combined by a hierarchical set of 
arithmetic-logic units as described in [5]. The interpolator is linear 
in the z-dimension and bi-linear in the x- and y-dimensions, 
thereby requiring four multiplications per sample. There are seven 
interpolation channels, one for each of the voxel fields or color-
opacity components plus one for each gradient component. 

The illuminator is a reflectance map implementation of the 
Phong module of lighting. It provides emissive, diffuse, and 
specular lighting from an arbitrary number of light sources. It also 
provides a modulation function based on the magnitude of the 
gradient. The compositor provides alpha-blending, maximum and 
minimum intensity projection, sum and count, and other functions 
for combining sample values along rays. It includes an alpha-
correction function to adjust opacity values for different spacing 
of samples. The compositor also implements an early ray termina-
tion test that stops processing of an individual ray when it reaches 
a threshold of opacity. 

VolumePro 1000 tries very hard to skip over samples that are 
not visible. The Sequencer keeps track of portions of the volume 
or image that are cut, cropped, clipped, or that fail depth tests, and 
it jumps over them when it is useful to do so. This kind of space 
leaping is called geometry-based space leaping because it depends 
only upon the position of a sample, not its value. A second kind of 
space leaping, called content-based space leaping because it 
jumps over samples that are invisible by virtue of opacity assign-
ment or filtering, was not included in VolumePro 1000.  

The actual performance of VolumePro 1000 is proportional 
to the number of rays in the image plane and how quickly they 
terminate. By contrast, VolumePro 500 performance is always 
proportional to the number of voxels in the volume data set. 

A dominant consideration in a semiconductor implementa-
tion of a volume-rendering algorithm is the amount of on-chip 
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memory needed. Both the shear-warp algorithm and shear-image 
order require one or more full slices of voxel values to be cached 
on the chip. This is a severe constraint and one of the most impor-
tant factors in the ASIC design. Both generations of VolumePro 
solve this problem by partitioning the volume data set into sec-
tions and by rendering the volume one section at a time. The 
amount of on-chip memory is thus proportional to the number of 
voxels and/or samples in a section. 

VolumePro 1000 implements early ray termination on a sec-
tion-by-section basis. While it is rendering a section, it maintains 
a bit map indicating which rays have reached a (programmable) 
threshold of opacity. When the bit map is full, the section is ter-
minated and the next section is begun. 

Figure 13 of the color page shows zoomed views of the ca-
rotid arteries rendered by VolumePro 1000. High image quality 
with lighting shows the details of the image. Although a printed 
article cannot show it, all of the images of this paper (except Fig-
ure 7, right) were generated at interactive speeds.3 

7 CONCLUSIONS & FUTURE WORK 

This paper describes the shear-image order ray-casting algo-
rithm along with its advantages in embedding polygon geometry 
and direct rendering anisotropic and sheared volume. The paper 
also introduces the implementation of this method in VolumePro 
1000, which provides high image quality, high speed and various 
advanced features. VolumePro 1000 supports the real-time vol-
ume visualization of large volume data sets for a variety of inter-
active applications. This paper only addresses parallel projections. 

Two challenges in the implementation of a future generation 
of VolumePro are content-based space leaping and ray-per-pixel 
rendering in perspective projection. Content-based space leaping 
can be implemented with a bit map indicating the spatial areas of 
the volume object that are transparent and those that are not. The 
challenge is providing enough on-chip memory for the bit map 
and in accessing it fast enough to gain a performance benefit. 

Efficient perspective rendering is needed maintain a sense of 
the viewer’s position within the volume, for example in interac-
tive fly through of the colon. Both 2D texture methods and shear-
warp can be made to support perspective volume rendering, and 
shear-warp methods can be efficient [2]. However, as in the paral-
lel projection, the need for a post warp step in perspective ver-
sions of shear-warp degrades the image quality. VolumePro 1000 
currently supports perspective using a variation of shear-warp. 

The shear-image algorithm can be adapted to support ray-
per-pixel perspective volume rendering. However, the image must 
be partitioned to avoid rays that diverge so they become too 
nearly parallel to slices of samples. The different partitions re-
quire different permutation matrices, and the slices of samples are 
parallel to different faces of the same volume. As a result, the 
volume must be rendered in multiple passes, one per partition. In 
addition, sample spacing varies from ray to ray in perspective 
projection. For high quality images, opacity values need to be 
adjusted on a ray-by-ray basis. (A single opacity adjustment per 
partition rays is used as an approximation in VolumePro 1000.) 
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Figure 1: Shear-Image Rendering Gallery: Various volumes with lighting effects or embedded geometry 

  
Figure 7: Comparison of shear-warp (left), and shear-image order (right) 

  
 Figure 8: Gradient magnitude modulation Figure 12: An image of a cerebral aneurysm 

         
Figure 13: Three zoomed views of the carotid arteries of the neck, showing the image quality of shear-image order 


